Z为损耗分配因数,如果Z=1.0表示所有损耗都在副边,如果Z=0表示所有的损耗都在原边,在这里取Z=0.5表示原副边都存在损耗。
铁氧体材料具有电阻率高,高频损耗小的特点,且有多种材料和磁芯规格满足各要求,加之价格较材料低廉,是目前在开关电源中应用最为广泛的材料。同时也有饱和磁感应比较低,材质脆,不耐冲击,温度性能差的缺点。
采用的是用于开关电源变压器及传输高功率器件的MnZn功率铁氧体材料PC40,其初始磁导率为2300±25%,饱和磁通密度为510mT(25℃时)/390mT(100℃时),居里温度为215℃。
高频功率电子电路中离不开磁性材料。磁性材料主要用于电路中的 变压器、扼流圈(包括谐振电感器)中。
磁性材料(Magnetic materials)有个磁饱和问题。如果磁路饱和,会导致变压器电量传递畸变,使得电感器电感量减小等。对于电源来说,有效电感量的减小,电源输出纹波将增加, 并且通过开关管的峰值电流将增加。这样可能使得开关管的工作 点超出安全工作区,从而造成开关管寿命的缩短或损坏。磁性材料的另一个问题就是居里点温度
(Curie Temperature)。在这一温度下,材料的磁特性会发生急剧变化。特别是该材料会 从强磁物质变成顺磁性物质,即磁导率迅速减小几个数量级。实 际上,它几乎转变为和空气磁芯等效。一些铁淦氧(ferrites)的居里 点可以低到130oC左右。因此一定要注意磁性材料的工作温度。
B(max)的计算结果,不要超过我们选型的铁心的额定值,并进行降额、并考虑外壳导致散热不良带来的影响,并留有余量。
反激变压器工作在第一象限,最高磁密应留有余度,故选取B=0.3T,反激变压器的系数K=0.0085(K1是反激变压器在自然冷却的情况下,电流密度取420A/cm时的经验值。)
EPC磁芯主要为平面变压器设计的,具有中柱长,漏感小的特点。EPC19磁芯的AP值约为0.11cm4,稍大于计算所需的AP=0.09 cm4。若再选用小一号的磁芯EFD15,其AP值约为0.047 cm4,小于计算所需的AP=0.09 cm4,不符合要求,故选用EPC19磁芯。
当变压器决定后,变压器的Bobbin(骨架)即可决定,依据Bobbin(骨架)的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
而0.72mm大于了2倍的集肤深度,使铜线的利用率降低,故采用两根0.35mm的漆包线并绕。
自供电绕组线径:由于自供电绕组的电流非常小只有5mA,因此对线径要求并不是很严格,在这里主要考虑为便于与次级更好的耦合及机械强度,因此也采用裸线mm的漆包线进行绕置,使其刚好一层绕下,减小与次级之间的漏感,保证短路时使自供电电压降低。
原边交流电阻与直流电阻比:由于原边采用包绕法,故原边绕组层数可按两层考虑,根据上式所求的Q值,查得。
Pcv为磁芯功率损耗,由峰值磁通密度摆幅、工作频率60KHz及工作温度100℃可在厂家手册上查出其损耗约为30mw/cm3。
总结:通过上述计算可知,当环境温度为85℃时,变压器最高温度在96℃左右,符合磁芯的最佳工作温度。同时采用包绕法使得漏感仅为70uH(1KHz时)/15uH(100KHz时),小于3%,效果较理想。