咨询热线

400-168-3656

您的当前位置: 首页 > 产品展示 > 干式变压器
杏彩体育:变压器的作用有些什么?

杏彩体育:变压器的作用有些什么?

  法拉第在1831年8月29日发明了一个“电感环”,称为“法拉第感应线圈”,实际上是世界上第一只变

  法拉第在1831年8月29日发明了一个“电感环”,称为“法拉第感应线圈”,实际上是世界上第一只变压器雏形。但法拉第只是用它来示范电磁感应原理,并没有考虑过它可以有实际的用途。

  1831年英国人法拉第(M.Farady)在铁环上缠绕两个闭合线圈, 在一个线圈中突然接上或断开电池, 另一个线圈所接仪表指针发生偏转, 从而发现电磁感应原理。

  1881年法国人爱维(Jaewin) 发现磁滞现象, 美国人斯坦曼茨(C.P.Steimetz)发现磁滞损耗是磁密的1.6次方成正比例。

  1881年,路森·戈拉尔(Lucien Gaulard)和约翰·狄克逊·吉布斯(John Dixon Gibbs)在伦敦展示一种称为“二次手发电机”的设备,然后把这项技术卖给了美国西屋公司,这是第一个实用的电力变压器,但并不是最早的变压器。

  同在1884年,路森·戈拉尔和约翰·狄克逊·吉布斯在采用电力照明的意大利都灵市展示了他们的设备。早期变压器采用直线型铁心,后来被更有效的环形铁心取代。

  西屋公司的工程师威廉·史坦雷从乔治·威斯汀豪斯、路森·戈拉尔与约翰·狄克逊·吉布斯买来变压器专利以后,在1885年制造了第一台实用的变压器。后来变压器的铁心由E型的铁片叠合而成,并于1886年开始商业运用。

  总之,变压器变压原理首先由法拉第发现,但是直到十九世纪80年代才开始实际应用。在发电场应该输出直流电和交流电的竞争中,交流电能够使用变压器是其优势之一。变压器可以将电能转换成高电压低电流形式,然后再转换回去,因此大大减小了电能在输送过程中的损失,使得电能的经济输送距离达到更远。如此一来,发电厂就可以建在远离用电的地方。世界大多数电力经过一系列的变压最终才到达用户那里的。

  1888年人多利沃—多勃罗沃尔斯基 ( M.O.Dolivo-Dobrowolsky ) 提出交流三相制。并于1890年发明了三相变压器。同年布朗(Brown)又制造出第一台油冷、油绝缘变压器。

  1891年德国生产30kVA的油浸变压器(1878年美国人勃劳克斯(D.Brdoks)开始用油做绝缘。)

  1900年英国人哈特菲尔德(Hodfeild)发明了硅钢片, 1903年开始用硅钢片制造变压器铁心。(德国在1904年, 美国在1906年, 在1911年, 日本在1922年分别用硅钢片制造变压器铁心)

  1915年华纳(K.W.Wagner)研究线圈内部电磁振荡的基本理论,提出了过电压保护一种方式。

  1922年美国人维特(J. M. Weed)研究过电压理论时, 提出了过电压保护另一种方式。

  1930年以后变压器进入改进提高阶段, 即采用新材料、改进结构、改进工艺、不断扩大变压器的使用范围

  它有一个共用的铁芯和与其交链的几个绕组线圈,且它们之间的空间位置不变。当某一个绕组从电源接受交流电能时,通过电感生磁、磁感生电的电磁感应原理改变电压(电流),在其余绕组上以同一频率、不同电压传输出交流电能。因此,变压器的主要结构就是铁芯和绕组。铁芯和绕组组装了绝缘和引线之后组成变压器的器身。器身一般在油箱或外壳之中,再配置调压、冷却、保护、测温和出线等装置,就成为变压器的结构整体。

  其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。它可以变换交流电压、电流和阻抗。最简单的铁心变压器由一个软磁材料做成的铁心及套在铁心上的两个匝数不等的线圈构成,如图所示。

  铁心的作用是加强两个线圈间的磁耦合。为了减少铁内涡流和磁滞损耗,铁心由涂漆的硅钢片叠压而成;两个线圈之间没有电的联系,线圈由绝缘铜线(或铝线)绕成。一个线圈接交流电源称为初级线圈(或原线圈),另一个线圈接用电器称为次级线圈(或副线圈)。实际的变压器是很复杂的,不可避免地存在铜损(线圈电阻发热)、铁损(铁心发热)和漏磁(经空气闭合的磁感应线)等,为了简化讨论这里只介绍理想变压器。理想变压器成立的条件是:忽略漏磁通,忽略原、副线圈的电阻,忽略铁心的损耗,忽略空载电流(副线圈开路原线圈线圈中的电流)。例如电力变压器在满载运行时(副线圈输出额定功率)即接近理想变压器情况。

  当变压器的原线圈接在交流电源上时,铁心中便产生交变磁通,交变磁通用φ表示。原、副线圈中的φ是相同的,φ也是简谐函数,表为φ=φmsinωt。由法拉第电磁感应定律可知,原、副线dφ/dt。式中N1、N2为原、副线(原线表示,副线表示),其复有效值为U1=-E1=jN1ωΦ、U2=E2=-jN2ωΦ,令k=N1/N2,称变压器的变比。由上式可得U1/ U2=-N1/N2=-k,即变压器原、副线圈电压有效值之比,等于其匝数比而且原、副线圈电压的位相差为π。

  在空载电流可以忽略的情况下,有I1/ I2=-N2/N1,即原、副线圈电流有效值大小与其匝数成反比,且相位差π。

  理想变压器原、副线。说明理想变压器本身无功率损耗。实际变压器总存在损耗,其效率为η=P2/P1。电力变压器的效率很高,可达90%以上。

  在三相电力系统中,一般应用三相变压器,当容量过大且受运输条件限制时,在三相电力系统中也可以应用三台单相式变压器组成变压器组。

  通常的变压器都为双绕组变压器,即在铁芯上有两个绕组,一个为原绕组,一个为副绕组。三绕组变压器为容量较大的变压器(在5600千伏安以上),用以连接三种不同的电压输电线。在特殊的情况下,也有应用更多绕组的变压器。

  如绕组包在铁芯外围则为铁芯式变压器;如铁芯包在绕组外围则为铁壳式变压器。二者不过在结构上稍有不同,在原理上没有本质的区别。电力变压器都系铁芯式。

  后来变压器的容量越做越大,电压也逐步提高,用空气来冷却和作为绝缘就越来越困难,因此就产生了油浸式变压器,把变压器浸在盛于铁箱中的油内。变压器油是从石油中提炼出来的,有很好的绝缘性能,它除了作为绝缘介质外,还作为一个散热的煤介。铁箱除了作为油的容器外,还提供了一个对周围空气的散热面。

  油浸式电力变压器在运行中,绕组和铁芯的热量先传给油,然后通过油传给冷却介质。油浸式电力变压器的冷却方式,按容量的大小,可分为以下几种:

  这种冷却方式的特点就是依靠油箱壁的辐射和变压器周围空气的自然对流把热量从油箱的冷却器表面带走。一般认为,当变压器容量在2500KVA及以下时,可以采用膨胀式散热器,变压器可不装储油柜,并可将其设计成全密封型,但是,较大容量的变压器必须人为地增大油箱与空气接触的散热表面。随着低损耗技术的发展,采用油浸自冷式冷却的容量上限在增加,400kVA及以下额定容量的变压器也可选用油浸自冷冷却方式。这样的优点是不要辅助供风扇用的电源,没有风扇所产生的噪声,散热器可以直接装在变压器油箱上,也可以集中装在变压器附近,油浸自冷式变压器的维护相对简单,始终可以在额定容量下运行。

  通常情况下,当变压器容量在8000KVA及以上、400KVA及以下时,可采用管式或片式散热器,可选用风冷冷却方式,一般在散热器上加装风扇,因为表面散热系数与流体在表面流动的速度有关,在吹风之后,对流部分的散热系数将增大好几倍,大大提高散热器的冷却效率。风冷式散热器是利用风扇改变进入散热器与流出散热器的油温差,提高散热器的冷却效率,使散热器数量减少,占地面积缩小。但此时要引入风扇的噪声,风扇的辅助电源。停开风扇时可按自冷方式运行,但是输出容量要减少,要降低到三分之二的额定容量。对管式散热器而言,每个散热器上可装两个风扇,对片式散热器而言,可用大容量风机集中吹风,或一个风扇吹几组散热器。

  对于油浸自循环风冷变压器而言,油为自然循环,其循环动力是温度差;变压器的器身(铁芯及线圈)由于电磁损耗而发热,这种热量由靠近绕组和铁芯部分的油所吸收;箱底油温低,顶层油温高,顶层油与散热器连通散热器内的油将热量传给散热管或者散热板片,再传给空气,这样散热器进出口就形成温度降落(一般为20-30℃)。由温度降落就形成油的密度变化,冷却油的密度变大,靠自重而下沉;油箱内的油因被器身加热使油温升高,密度变小,形成浮升力;这样油箱内的发热与油箱外部的空气靠动力循环,热空气被风扇吹走,冷空气随之补充进来形成冷热空气交换流动,变压器的热量不断地传给空气,形成一种动态平衡。

  对于强迫油循环冷却的变压器,它的油箱上没有油管或者散热器,变压器内的油经过管道和油泵被打到一个分开装置的油冷却器,油被冷却后重新回到变压器内。这种冷却方式的优点是:

  一方面,利用油泵后可以加强变压器内部油的流动,降低内部绕组对油的温升;另一方面,由于去掉了庞大的散热器,变压器的安装面积可以大大缩小,而且散热器可以安装在其他合适的地方,这一点对于巨型水电站的设计是很有利的。因为水电站的水源方便,一般采用水冷却方式。在其他场合也可以用风冷,它的结构基本上与装在变压器上的冷却器差不多。强迫油循环冷却因为结构较为复杂,所以一般只用在容量为500KVA及以上的巨型变压器上。

  油浸式变压器主要由铁芯、绕组、油箱、油枕、散热器、套管和分接开关等组成。铁芯构成了磁路,线圈套在铁芯上。线圈由导线绕制而成,绕组是指与电源(或负载)相接的线圈或线圈的组合,即绕组是由线圈所组成的。通常把铁芯和绕组合在一起称为变压器的器身,是变压器的最基本的组成部分。

  铁芯是变压器的磁路部分。运行时因产生磁滞损耗和涡流损耗而发热。为降低发热损耗和减小体积和重量,铁芯由厚度小于0.35mm,导磁系数高的冷轧晶粒取向硅钢片构成。依照绕组在铁芯中的布置方式,有铁芯式和铁壳式之分。在大容量的变压器中,为使铁芯损耗发出的热量能够被绝缘油在循环时充分带走,以达到良好的冷却效果,常在铁芯中设有冷却油道。

  绕组和铁芯都是变压器的核心元件。由于绕组本身有电阻或接头处有接触电阻,由I2Rt知要产生热量。故绕组不能长时间通过比额定电流高的电流。另外,通过短路电流时将在绕组上产生很大的电磁力而损坏变压器。其基本绕组有同心式和交叠式两种。变压器绕组主要故障是匝间短路和对外壳短路。匝间短路主要是由于绝缘老化,或由于变压器的过负荷以及穿越性短路时绝缘受到机械的损伤而产生的。对外壳短路的原因也是由于绝缘老化或油受潮、油面下降,或因雷电和操作过电压而产生的。

  油浸式变压器的器身(绕组及铁芯)都装在充满变压器油的油箱中,油箱用钢板焊成。中、小型变压器的油箱由箱壳和箱盖组成,变压器的器身放在箱壳内,将箱盖打开就可吊出器身进行检修。

  油枕又叫油柜,是一种油保护装置,它是由钢板做成的圆桶形容器,水平安装在变压器油箱盖上,用弯曲管与油箱连接。油枕的一端装有一个油位计(油标管),从油位计中可以监视油位的变化。油枕的容积一般为变压器油箱所装油体积的8%~10%。当变压器油的体积随着油的温度膨胀或缩小时,油枕起着储油及补油的作用,从而保证油箱内充满油。同时由于装了油枕,使变压器油缩小了与空气的接触面,减少了油的劣化速度。

  又称吸湿器,通常由一根管道和玻璃容器组成,内装干燥剂(硅胶或活性氧化铝)。当油枕内的空气随变压器油的体积膨胀或缩小时,排出或吸入的空气都经过呼吸器,呼吸器内的干燥剂吸收空气中的水分,对空气起过滤作用,从而保持油的清洁。浸有氯化钴的硅胶,其颗粒在干燥时是钴蓝色的,但是随着硅胶吸收水分接近饱和时,粒状硅胶将转变成粉白色或红色,据此可判断硅胶是否已失效。受潮后的硅胶可通过加热烘干而再生,当硅胶颗粒的颜色变成钴蓝色时,再生工作就完成了。

  充有变压器油的电力变压器中,如果内部出现故障或短路,电弧放电就会在瞬间使油汽。

相关新闻
相关产品
更多推荐
科技·质量·服务·创新

科技·质量·服务·创新

杏彩体育 在线咨询在线咨询 一键拨打一键拨打